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Abstract

An integrated framework for process monitoring and diagnosis is presented which combines wavelets for feature extraction
from dynamic transient signals and an unsupervised neural network for identification of operational states. Multiscale wavelet
analysis is used to determine the singularities of transient signals which represent the features characterising the transients. This
simultaneously reduces the dimensionality of the data and removes noise components. A modified version of the adaptive
resonance theory is developed, which is designated ARTnet and uses wavelet feature extraction as the substitute of the data
pre-processing unit. ARTnet is proved to be more effective in dealing with noise contained in the transient signals while retains
being an unsupervised and recursive clustering approach. The work is reported in two parts. The first part is focused on feature
extraction using wavelets. The second part describes ARTnet and its application to a case study of a refinery fluid catalytic
cracking process. © 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

In modern process plants controlled by distributed
control systems, the role of operators has changed from
being primarily concerned with control to a broader
supervisory responsibility: analysing operational data,
identifying unusual conditions as they develop and
responding rapidly and effectively by taking corrective
actions. This is a challenging task because of the over-
whelming volume of data operators have to deal with.
In recent years there has been a significant progress in
applying intelligent systems for process monitoring and
diagnosis. This includes the use of neural networks,
multivariate statistical analysis, expert systems as well
as qualitative simulation. It is recognised that in process
monitoring and diagnosis, dynamic trend signals are
often more important than variable values at the cur-
rent sampling instant and that therefore a critical issue
is how to discriminate dynamic transients automatically
in computer based systems. Computer based processing
of dynamic trend signals is aimed at noise removal and

dimension reduction using minimum data points to
capture the features characterising the trend signals.
Various approaches have been proposed and their ef-
fectiveness depends largely on how the processed infor-
mation is to be used, i.e. by human experts, expert
systems or neural networks. In this work, an integrated
framework, ARTnet is developed and subsequently ap-
plied to a case study of a refinery fluid catalytic crack-
ing process. ARTnet is a modified version of the
adaptive resonance theory (ART2) (Carpenter and
Grossberg, 1987; Whiteley & Davis, 1992, 1994; White-
ley, Davis, Mehrotra, & Ahalt, 1996) which uses
wavelet transforms as the substitute of the data pre-
processing unit of ART2.

The work is reported in two parts. The first part is
focused on feature extraction from dynamic transient
signals using wavelet transforms and the second part is
concerned with the introduction of ARTnet and its
application to a case study of a refinery fluid catalytic
cracking process. The first part is organised as follows.
In Section 2 some representative approaches for feature
extraction are briefly reviewed. This naturally leads to
the introduction of wavelet multiscale analysis for fea-
ture extraction in Section 3. Wavelet multiscale analysis
finds the extrema of a transient signal and an important
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issue is how to remove the effects of noise components
and achieve consistent results in different scales. This is
the subject of Section 4.

2. Previous work on feature extraction of dynamic
transients

This section briefly reviews some of the previous
work on feature extraction. Feature extraction is basi-
cally a transformation of the data composing a dy-
namic trend to a lower dimensionality. An important
property of such a transformation is that it is informa-
tion preserving, that is, data is reduced by removing
redundant components while preserving, in some opti-
mal sense, information which is crucial for pattern
discrimination.

Some researchers have adapted the episode represen-
tation technique originated by William (1986) to quali-
tative interpretation of transient signals. Janusz and
Venkatasubramanian (1991) developed an episode ap-
proach that uses nine primitives to represent any plots
of a function. Each primitive consists of the signs and
the first and second derivatives of the function. There-
fore, each primitive posses the information about
whether the function is positive or negative, increasing,
decreasing, or not changing and the concavity. An
episode is an interval described by only one primitive
and the time interval the episode spans. A trend is a
series of episodes that when grouped together can com-
pletely describe the dynamic feature. The approach
automatically converts on-line sensor data to qualita-
tive classification trees. Cheung and Stephanopoulos
(1990) developed a slightly different approach called
triangular-episode that uses seven triangle components
to describe a dynamic trend. Bakshi and Stephanopou-
los (1994, 1996) used wavelet decomposition of func-
tions in different scales and zero-crossing of wavelet
derivatives to find the inflections of decomposition. In
this way, episodes can be identified automatically by
computers. Based on episode analysis, dynamic trends
can be interpreted as symbolic representations. The
main idea of dynamic trend interpretation using episode
approaches is to classify a trend such as increasing or
decreasing pieces. This interpretation is some times not
enough and inadequate in process analysis. Further-
more, there is no noise filtering in any of the episode
based approaches, which significantly limits the trend
representation and identification capability.

Whiteley and Davis (1992) applied back-propagation
neural networks (BPNN) to convert numerical sensor
data into symbolic abstractions. The major limitation
of this approach is that it requires training data to train
the model first.

The most well known technique for signal analysis is
probably the Fourier transform and it is therefore

necessary to mentioned it here. Fourier transform uses
sine and cosine as its building blocks to decompose a
function into a sum of frequency components. How-
ever, Fourier transform does not show how frequency
varies with time, therefore it is not able to detect when
a particular event took place. It means that the non-sta-
tionary feature of the signal is not captured. The short-
time Fourier transform is able to overcome this
limitation by sliding a window over the signal in time.
However in time-frequency analysis of a non-stationary
signal, there are two conflicting requirements. The win-
dow width must be long enough to give the desired
frequency resolution but must also be short enough to
lose track of time dependent events. While it is possible
to optimise the design of window shapes to optimise, or
trade-off time and frequency resolution, there is a fun-
damental limitation on what can be achieved, for a
given fixed window width (Dai, Joseph & Motard,
1994).

3. Feature extraction using wavelet transform

A very brief introduction of wavelet transformation
for signal processing is now presented. Then the
method employed in this study for feature extraction
using wavelets is introduced and illustrated using
examples.

3.1. Signal transformation using wa6elets

Wavelet transformation is designed to address the
problem of non-stationary signals. It involves repre-
senting a time function in terms of simple, fixed build-
ing blocks, termed wavelets. These building blocks are
actually a family of functions which are derived from a
single generating function called the mother wavelet by
translation and dilation operations. Dilation, also
known as scaling, compresses or stretches the mother
wavelet and translation shifts it along the time axis.

The mother wavelet satisfies& +�

−�

c(t) dt=0 (1)

and the translation and scaling operations on c(t)
creates a family of functions,

ca,b(t)=
1


a
c
�t−b

a
�

(2)

The parameter a is a scaling factor and stretches (or
compresses) the mother wavelet. The parameter b is a
translation along the time axis and simply shifts a
wavelet and so delays or advances the time at which it
is activated. Mathematically delaying a function f(t) by
td is represented by f(t− td). The factor 1/
a is used to
ensure the energy of the scaled and translated versions
are the same as the mother wavelet.
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The stretched and compressed wavelets through scal-
ing operation are used to capture the different fre-
quency components of the function being analysed. The
translation operation, on the other hand, involves shift-
ing of the mother wavelet along the time axis to capture
the time information of the function to be analysed at
a different position. In this way, a family of scaled and
translated wavelets can be created using scaling and
translation parameters a and b. This allows signals
occurring at different times and having different fre-
quencies to be analysed. In contrast to the short-time
Fourier transform, which uses a single analysis window
function, the wavelet transform can use short windows
at high frequencies or long windows at low frequencies.
Thus wavelet transform is capable of zooming-in on
short-lived high frequency phenomena and zooming-
out on sustained low frequency phenomena. This is the
main advantage of the wavelet over the short-time
Fourier transform.

Wavelet transform can be categorised into continu-
ous and discrete. Continuous, in the context of wavelet
transform, implies that the scaling and translation
parameters a and b change continuously. However,
calculating wavelet coefficients for every possible scale
can represent a considerable effort and result in a vast
amount of data. Therefore discrete parameter wavelet
transform is often used. The discrete parameter wavelet
transform uses scale and position values based on pow-
ers of two-so-called dyadic scales and positions and
makes the analysis much more efficient, whilst remain-
ing accurate. To do this, the scale and time parameters
are discretised as follows,

a=a0
m, b=nb0a0

n m, n are integers (3)

The family of wavelets {cm,n(t)} is given by

cm,n(t)=a0
−m/2c(a0

−mt−nb0) (4)

resulting in a discrete wavelet transform (DWT) having
the form

DWTf(m, n)=� f, cm,n�

=a0
−m/2& +�

−�

f(t)c(a0
−mt−nb0) (5)

Mallat (1989) developed an approach for implement-
ing this using filters. For many signals, the low fre-
quency content is the most important part. The high
frequency content, on the other hand provides flavour
or nuance. In wavelet analysis the low frequency con-
tent is called the approximation and the high frequency
content is called the detail. The filtering process uses
lowpass and highpass filters to decompose an original
signal into the approximation and detail parts. It is not
necessary to preserve all the outputs from the filters.
Normally they are downsampled and keep only the even
components of the lowpass and highpass filter outputs.

The decomposition can be iterated, with successive
approximations being decomposed in turn, so that one
signal is broken into many lower-resolution
components.

In the case of a discrete wavelet transform, recon-
struction of the original signal is not guaranteed.
Daubechies (1992) developed conditions under which
the {cm,n} form an orthonomal basis. Usually, a0=2
and b0=1 are used, although any values can be used.
In this case, both the transform and reconstruction are
complete because the family of wavelets form an or-
thonormal basis.

3.2. Singularity detection using wa6elets for feature
extraction

Singularities often carry the most important informa-
tion in signals. Singularities of a signal can be used as
the compact representation, i.e. the features of the
original signal. Mathematically, the local singularity of
a function is measured by Lipschitz exponents (Mallat
& Hwang, 1992). Mallat and Hwang (1992) proved that
the local maxima of the wavelet transform modulus
detects the locations of irregular structures and pro-
vides numerical procedures for computing the Lipschitz
exponents. Within the framework of scale-space filter-
ing, inflexion points of f(t) appear as extrema for
(f(t)/(t and zero crossing for (2f(t)/(t2, so Mallat and
Zhong (1992) suggests using a wavelet which is the first
derivative of a scaling function F(t),

c(t)=
df(t)

dt

with a cubic spine being used for the scaling function.
Bakshi and Stephanopoulos (1996) used the inflexion
points as the connection points of episode segments of
a signal.

The wavelet modulus maxima and zero-crossing rep-
resentations were developed from underlying continu-
ous-time theory. For computer implementation, this
has to be cast in discrete-time domain. Berman and
Baras (1993) proved that wavelet transform extrema/
zero-crossing provide stable representations of finite
length discrete-time signals. A more complete discrete-
time framework for the representation of the wavelet
transform was developed by Cvetkovic and Vetterli
(1995) and therefore is used in this study. They de-
signed a non-subsampled multi-resolution analysis filter
bank to implement the wavelet transform. Using this
filter bank, the wavelet function can be selected from a
wider range than the B-spline in Mallat’s method.

Non-subsampled multi-resolution analysis was used
to determine singularities of a signal. An octave band
non-subsampled filter bank with analysis filters H0(z)
and H1(z) is shown in Fig. 1. In this method, a wavelet
transform refers to the bounded linear operators
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Wj :l2(Z)� l2(Z); j=1, 2, …j+1. The operators Wj,

are the convolution operators with the impulse re-
sponses of the filters:

V1(z)=H1(z)

V2(z)=H0(z)H1(z2)

Vj(z)=H0(z) ··· H0(z2 j−2
)H1(z2 j−1

)

Vj+1(z)=H0(z) ··· H0(z2 j−2
)H0(z2 j−1

)

The multiresolution procedure depicted in Fig. 1 can
be described less rigorously. Fig. 1 shows four steps, or
four scales. In the first scale, the original signal is split
into approximation Ax

1 and detail Dx
1. The detail Dx

1

is supposed to be mainly the noise components of the
original signal. Ax

1 is further decomposed into approx-
imation Ax

2 and detail Dx
2, Ax

2 to Ax
3 and Dx

3 and
Ax

3 to Ax
4 and Dx

4. In each step the extrema of the
detail are found. Apparently, in the first few steps, the
extrema are both as a result of the noise and the trend
of the noise-free signal. With scales being increased, the
noise extrema will gradually be removed while the
extrema of the noise-free signal remain. In this way,
through multi-scale analysis and extrema determina-
tion, the extrema of the noise-free signal can be found,
which are regarded as the features of the signal.

For the representation of extrema, it is convenient to
use a finite impulse response (FIR) wavelet filter. The
FIR is a filter with the sequence {ak :k�Z} and has only
K non-zero terms. A typical example is the Haar
wavelet, which has only two non-zero coefficients.
Daubechies’ wavelets (Daubechies, 1992) are also FIR
filters and smoother than the Haar wavelet.
Daubechies’ wavelets having more coefficients are
smoother and have higher vanishing moments. They
also require less computational effort as they are con-
structed by filter convolution.

The Daubechies’ scale and wavelet functions are
expressed as

f(t)=%
k

h(k)f(2t−k) (6)

c(t)=%
k

g(k)f(2t−k) (7)

where {h(k)} is the low-pass filter coefficients and
{g(k)} the band-pass filter coefficients.

Daubechies’ wavelets have a maximum number of
vanishing moments for the support space. The vanish-
ing moments of the wavelets also have a different
number of coefficients. Using wavelets with more van-
ishing moments has the advantage of being able to
measure the Lipschitz regularity up to a higher order,
which is helpful in filtering noise, but it also increases
the number of maxima lines. The number of maxima
for a given scale often increases linearly with the num-
ber of moments of the wavelet. In order to minimise
computational effort, it is necessary to have a minimum
number of maxima to detect the significant irregular
behaviour of a signal. This means choosing a wavelet
with as few vanishing moments as possible but with
enough moments to detect the Lipschitz exponents of
the highest order components of interest.

In this study, an eight coefficient ‘least-asymmetric’
Daubechies’ wavelet is used as a filter. The scale and
wavelet function for this filter are illustrated in Fig. 2.

A signal f(t)=sin (t) and its extrema of wavelet
analysis using non-subsampled filter bank with
Daubechies’ eight coefficients least asymmetry wavelet
is illustrated in Fig. 3, which shows that extrema of
wavelet analysis correspond to the singularities of the
signal. In Fig. 3b, the wavelet is used as filter and the
first singularity of the signal in Fig. 3a corresponds to
minimum of wavelet analysis. In Fig. 4 it is a maximum
because a different wavelet is employed. The former is
used here.

3.3. Noise extrema remo6al

The extrema obtained from wavelet multi-resolution
analysis correspond to the singularities of the signal,
which may also include those produced by noise, de-
pending on the analysis scales. Therefore, in feature
extraction it is necessary to further identify and filter
out noise extrema from wavelet transform. The most
classical technique of removing noise from a signal is to
filter it. Part of the noise is removed but it may also
smooth the signal singularities at the same time. Mallat
and Hwang (1992) and Mallat and Zhong (1992) devel-
oped a technique for evaluating noise extrema in
wavelet analysis. They found that some noise maxima
increase on average when the scale decreases or don’t
propagate to larger scales. These are the modulus max-
ima which are mostly influenced by noise fluctuations.Fig. 1. An octave band non-subsampled filter bank.
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Fig. 2. The ‘least-Asymmetric’ scale function and wavelet function.

Fig. 3. Signal (a) and its extrema (b) of wavelet analysis using Daubechies’ eight coefficients wavelet.

Fig. 5 and Fig. 6 illustrate this idea. In Fig. 5, three
different noise frequencies are studied. The wavelet
multi-resolution analysis is shown on the left and ex-
trema of wavelet analysis are on the right. Clearly, the
extrema will decrease and then disappear as the scale
increases.

Fig. 6 shows a signal which is basically the sine in
Fig. 3a corrupted by white noise as well as the wavelet
multi-scale extrema analysis. Noise components are re-
duced and then disappear as the scale increases. The
results for scales-4 and -5 are similar to that of Fig. 3b
which is noise-free. This shows that the extrema of the
trend signal are retained while noise extrema are
filtered.

3.4. Piece-wise processing

Two observations are made about the above discus-
sions. Firstly, extrema analysis using wavelet multireso-
lution analysis remains steady with the increase of
scales, so the representation is steady. For example, in
Fig. 6 when the scale is increased from four to five, the
four extrema remain. Secondly, the location of extrema
may slightly shift with time as scale increases. In Fig. 6,

the extrema representation in scale-4 is a vector of
dimension 70,

Scale-4= (… x5… x23… x37… x53…)

where x5 stands for a non-zero datum in column
5.While in scale-5, it becomes

Fig. 4. Extrema of wavelet analysis using Daubechies’ ten coefficients
wavelet.
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Fig. 5. Noise signal, its wavelet transformation and the extrema of wavelet analysis.

Scale-5= (… x7… x22… x38… x54…)

It is obvious that non-zero datum in the position 5 of
scale-4 is shifted to the position 7 of scale-5. This
inconsistency should be avoided. For instance
(2, 0 … 0, 3) and (2, 0 … 3, 0) should be considered dif-
ferent. This is necessary especially when the trends of a
variable at different operations conditions are
considered.

The extrema representation can be highly sparse vec-
tors. This is true for process dynamic responses which are

slow in frequency. The method we used is called piece-
wise processing. The idea is to map a highly sparse vector
to a denser vector by dimension reduction. For example,
with scale-4 and scale-5 discussed above, if the piece-wise
sub-region is fixed as four data points, then scale-4 and
scale-5 will be transformed to vectors of dimension 18.

Scale-4%= (… x2 … x6 … x10 … x13 …)

Scale-5%= (… x2 … x6 … x10 … x13 …)

It is clear that after piece-wise processing, the dimen-
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sion is reduced and scale-4% and scale-5% are consistent.
Therefore using piece-wise processing technique, it can
achieve consistent feature extraction as well as dimen-
sion reduction.

4. Final Remarks

Features of a process dynamic transient signal are
identified as the singularities and irregularities because
they contain the most important information corre-
sponding to changes of operational states. The ap-

proach developed by Mallat and Hwang (1992) and
Cvetkovic and Vetterli (1995) for determining singulari-
ties and irregularities is introduced for feature extrac-
tion of dynamic transient signals of process operations,
which are the extrema of wavelet analysis. An approach
for noise extrema removal and piece-wise dimension
reduction are also discussed. In the second part of the
paper, the use of the approach to replace the data
pre-processing part of the adaptive resonance theory to
develop a more efficient unsupervised and recursive
learning system ARTnet and describe its application to
a refinery fluid catalytic cracking process is reported.

Fig. 6. Noise signal and its multi-resolution analysis. Ax
i, approximation of multiresolution analysis; Dx

i, detail.
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5. Notation

A approximation in wavelet multiresolution
analysis
wavelet dilation parametera
discrete wavelet transform parametersa0, b0

wavelet translation parameterb
detail in wavelet multiresolution analysisD

DWTf discrete wavelet coefficient
f(t) a function in the time domain
g(k) the kth wavelet synthesis filter

wavelet analysis filterH
the kth wavelet analysis filterh(k)
discrete wavelet transform parametersm, n
scales

t time

Greek
Lipchitz exponenta
wavelet functionc

f(t) wavelet scale function or orthogonal
function
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